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ABSTRACT

We suggest a physical mechanism whereby the acceleration time of cosmic rays (CRs) by shock waves can be sig-
nificantly reduced. This creates the possibility of particle acceleration beyond the knee energy at!1015 eV. The accel-
eration results from a nonlinear modification of the flow ahead of the shock supported by particles already accelerated
to the kneemomentum at p ! p". The particles gain energy by bouncing off convergingmagnetic irregularities frozen
into the flow in the shock precursor and not so much by recrossing the shock itself. The acceleration rate is thus
determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path
(mfp). The velocity gradient is, in turn, set by the knee particles at p ! p" as having the dominant contribution to the
CR pressure. Since it is independent of the mfp, the acceleration rate of particles above the knee does not decrease
with energy, unlike in the linear acceleration regime. The reason for the knee formation at p ! p" is that particles with
p > p" are effectively confined to the shock precursor only while they are within limited domains in the momentum
space, while other particles fall into ‘‘loss islands,’’ similar to the ‘‘loss cone’’ of magnetic traps. This structure of the
momentum space is due to the character of the scattering magnetic irregularities. They are formed by a train of shock
waves that naturally emerge either from unstably growing and steepening magnetosonic waves or as a result of
acoustic instability of the CR precursor (CRP). These losses steepen the spectrum above the knee, which also
prevents the shock width from increasing with the maximum particle energy.

Subject headings: acceleration of particles — cosmic rays — shock waves — supernova remnants — turbulence
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1. INTRODUCTION

The first-order Fermi acceleration, also known as diffusive
shock acceleration (DSA), is regarded as the principal mechanism
whereby Galactic CRs are produced. The physics of the energy
gain is very simple: particles get kicked sequentially by scattering
centers that are on the opposite side of the shock front and so
approach each other. Its modern version has been developed by
Krymsky (1977), Axford et al. (1977), Bell (1978), Blandford &
Ostriker (1978), and others. Soon after that, however, it was re-
alized that the mechanism can onlymarginally (if at all; Lagage&
Cesarsky 1983) account for the acceleration of the Galactic CRs
up to the knee energy at 1015 eV (see also Jones et al. 1998; Kirk&
Dendy 2001, for more recent good discussions). Up to the knee,
the spectrum is nearly a perfect power law, so it is most probably
produced by a single mechanism. At the same time, the low par-
ticle scattering rate makes the mechanism somewhat slow and the
particle confinement to the shock insufficient to accomplish this
task over the active lifetime of a typical Galactic supernova rem-
nant (SNR) shock, which is considered to be the most probable
site of CR acceleration.

Not surprisingly, there have been many suggestions as to how
to improve the performance of the DSA. In one way or another
they targeted the most important and, at the same time, the most
uncertain parameter that determines the acceleration time, the par-
ticle diffusivity !. The acceleration rate can be written roughly as
"#1
acc ¼ U 2

sh/! pð Þ, where Ush is the shock velocity. Therefore, the
acceleration rate decreases with particle momentum p, since the
particle diffusion coefficient ! usually grows with it. In the Bohm
limit, which is reasonably optimistic, one can represent ! as ! ¼
crg/3, where rg is the particle gyroradius (substituted in the last
formula as a particle mfp k) and c is the velocity of light. The con-
dition k ! rg is justifiedwhen themagnetic field perturbations that
scatter accelerated particles (and are driven by them at the same
time) reach the level of the ambient magnetic field, #B ! B0. Such

a high fluctuation level has been long considered as a firm upper
limit (McKenzie & Völk 1982), and there have been calculations
indicating that the turbulence may saturate at a somewhat lower
level due to nonlinear processes (e.g., Achterberg & Blandford
1986).

It should be noted, however, that in cases of efficient particle
acceleration, i.e., when a significant part of the shock ram pres-
sure $U2

sh is converted to the pressure of accelerated particles
Pc , there is indeed sufficient free energy of accelerated particles
that can potentially be transformed to fluctuations with #B3B0.
This would decrease k significantly below the particle gyroradius
(calculated by the unperturbed field B0), so the acceleration time
would also decrease. From simple energetics principles, one can
estimate the maximum fluctuation energy as (McKenzie & Völk
1982)

#B2

B2
0

! MA
Pc

$U 2
sh

; ð1Þ

where MA ¼ Ush/VA B0ð Þ is the shock Alfvén Mach number.
Bell & Lucek (2001) suggested that this upper bound may in-
deed be reached, corroborating this idea by the numerical sim-
ulation (Lucek & Bell 2000). The supporting simulation was
rather limited in the system size and particle energy range, which
in turn truncates the wave spectrum. Therefore, the saturation
effects predicted earlier by McKenzie & Völk (1982), Achterberg
& Blandford (1986), and Blandford & Eichler (1987) have not
been observed in the simulations by Lucek & Bell (2000). In any
case, equation (1) provides only an upper bound to the actualwave
amplitude, whichmay bemuch lower due to the saturation effects,
not included in its derivation. On the other hand, Bell (2004) sug-
gested that the magnetic field can reach an even higher level if the
CR current that drives the instability is fixed. According to this
suggestion, the instability saturationmechanism is due tomagnetic
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tension. Under these circumstances the estimate given by equa-
tion (1) acquires an additional factor !MA(Ush/c), which may be
quite large in the case of young SNRs,making the turbulence level
sufficient to increase the maximum particle momentum by a factor
of 103.

A different approach to the same goal of increasing the turbu-
lent component beyond the ambient field level has been pursued
in the recent papers by Ptuskin & Zirakashvili (2003, 2005).
These authors studied the DSA in the presence of a Kolmogorov-
typemagnetohydrodynamic (MHD) cascade initiated by the strong
MHD instability in the CRP. In addition, recently Bell (2004)
took up from the Bell & Lucek (2000) and Lucek & Bell (2000)
approaches and replaced the time-consuming particle simula-
tions by providing an estimate of the growth rate caused by the
CR current at the shock. With the current kept fixed, the waves
indeed grow to a level sufficient to increase the maximum par-
ticle momentum by a factor of 103. It remains unclear, however,
whether the CR trapping by the self-generated turbulence and
other wave-particle interactions (e.g., Völk et al. 1984; Achterberg
& Blandford 1986) saturates the instability at a lower level. Be-
sides, the alleged growth of #B beyond B0 clearly invalidates
treatments of the linear instability that are based on the #BT
B0 assumption.

Diamond&Malkov (2004) suggested an alternative picture in
which a strong #B may be generated as a result of a type of in-
verse cascade in k-space. Strong field perturbations driven reso-
nantly by already accelerated particles are nonlinearly coupled to
longer scales, not only facilitating the acceleration of higher
energy particles but also providing an ambient field for them as
the longest scale field perturbation. Such a cascade can be driven
by scattering of the Alfvén waves on acoustic waves driven, in
turn, by the Drury instability of the CRP. Another related route
to large-scale magnetic fluctuations is modulational instability of
the Alfvén waves themselves. The condensation of magnetic en-
ergy at long scales allows us to marginally preserve the weak
turbulence #B < B0 requirement, where the role of B0 is taken by
the longest scale part of the magnetic energy spectrum (longer
than the particle gyroradius). This could possibly weaken the
saturation factors setting in at #B ! B0, which are noted above.

The above-mentioned works, while aimed at the explanation
of acceleration beyond the knee, do not specifically address
mechanisms that could be responsible for the formation of the
knee itself. An exception is a paper by Drury et al. (2003), in
which the authors suggested that the knee can appear as a result of
an abrupt slowing down of the acceleration at the sweep-up phase
in combination with the Bell hypothesis about the generation of
the strongmagnetic field. Some further interesting ideas about the
knee origin can be found in a recent paper by Sveshnikova (2003).

In this paper we propose a different scenario of faster than
Bohm acceleration that is also intimately related to the knee
phenomenon. Odd as it sounds, this mechanism does not require
super-Bohm magnetic field fluctuations. The reason for that is
that its rate does not depend on the particle scattering mfp k. In
x 2 we describe the mechanism by comparing it with both the test
particle and nonlinear DSA regimes under the Bohm diffusivity.
We analyze the conditions under which the proposed accelera-
tion regime is faster than the latter two. This sets the stage for
xx 3 and 4, in which a preliminary study of particle dynamics and
transport in the CRP is presented. Section 5 deals with the esti-
mates of the maximum energy that can be reached in excess of
the knee energy. In x 6 an acceleration model that allows us to
calculate the slope of the spectrum between the knee and the
maximum energy is presented.We concludewith a summary and
brief discussion.

2. ACCELERATION MECHANISM: A PRIMER

Perhaps the easiest way to understand why and when the sug-
gested version of the DSA becomes faster than the standard one
is to consider why the latter is slow. For that, we turn to the in-
dividual particle treatment due to Bell (1978). Upon completing
one acceleration cycle, i.e., crossing and recrossing the discon-
tinuity, a particle gains momentum

!p

p
! !U

c
; ð2Þ

where !U is the relative velocity between the upstream and
downstream scattering centers!U ¼ U1 # U2 ! U1. Thus, over
the acceleration time (when the momentum gain !p ! p), the
number of cycles that the particle needs to make is Ncycl !
c/U1 31. Apart from numerical factors and the differences be-
tween the upstream and downstream residence time contributions,
the particle acceleration time can be estimated as

"acc ’
! pð Þ
U 2

1

! kc=U 2
1 ! "colc

2=U 2
1 ; ð3Þ

where k and " col are the particle mfp and collision time, respec-
tively. It is also useful to note that the acceleration time is of order
the time needed for the fluid element to cross the diffusion zone
ahead of the shock, "acc! Ldif pð Þ/U1, where Ldif ¼ ! pð Þ/U1 is
the particle diffusion length. Using equations (2) and (3), one can
write the following relation between the acceleration time, the
time needed to complete one cycle, and the collision time:

"acc : "cycl : "col!
c2

U 2
1

:
c

U1
: 1:

Therefore, out of the c2/U 2
1 wave-particle collisions needed to

gain a momentum!p ! p, only c/U1 are productive in terms of
the energy gain. Most of the collisions are wasted.

The situation changes fundamentally when the number and
energy of accelerated particles increase. First of all, the shock gets
shieldedwith a cloud of accelerated particles (CRs) diffusing ahead
of it, and the plasma flow becomes significantly modified by their
back-reaction. In addition to an abrupt velocity jump (which can
be significantly reduced by this back-reaction), the flow develops
an extended CRP of length Lp! ! p"ð Þ/U1 ¼ Ldif p"ð Þ, where p"
is the particle momentum corresponding to the maximum con-
tribution to the pressure of accelerated particles. The flow in the
CRP gradually slows down toward the main shock (subshock),
and the spectrum is flatter than p#4 at high momenta, so that p" ’
pmax and thus Lp ’ Ldif p"ð Þ. Let us assume that a particle under-
goes subsequent scattering by two scattering centers, approaching
each other at a speed #UTc (Fig. 1). Suppose that immediately
after scattering off the right center, the particle has (in that center
reference frame) themomentum p and the cosine of the pitch angle
with respect to the plasma flow (moving to the left), % < 0. After
scattering off the left center, the particle momentum becomes p0,
and the cosine of the pitch angle %0 > 0, i.e., the particle moves
back toward the first scattering center. Since scattering is elastic,
from particle kinematics we obtain

p0

p
’ 1# #U

c
%

! "
1þ #U

c
%0

! "
: ð4Þ

This result is obviously identical to the momentum gain in the
conventional DSA theory (Bell 1978). The left scattering center
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can be identified with one of the downstream, and the right one
with one of the upstream, scattering centers. Considering % and
%0 as independent stochastic variables evenly distributed over
the intervals (#1, 0) and (0, 1), respectively, one can calculate
an average momentum gain,

#ph i
p

’ 2
#U

c
%h i ¼ 4

3

#U

c
; ð5Þ

where

(h i ¼
R 1
0 (ð Þ% d%
R 1
0 % d%

:

Note that the last result also holds in the case in which there is an
intervening scattering that does not reverse the particle direc-
tion. This can be seen from equation (4) by noting that in such a
case, both %-values would be of the same sign and cancel on
averaging to first order in #U/c. Just as in the conventional
( linear) acceleration theory, a pair of scattering centers does not
need (and is unlikely) to be the same at the next acceleration cycle.
However, this is quite possible in the scattering environment
considered later in this paper. If so, then the momentum gain per
cycle #p can be obtained from the conservation of the adiabatic
invariant,

Jk ¼
I

pk dlk ¼ constant;

where the integral runs between the two scattering centers. If
the interaction time of a particle with a scattering center is much
shorter than the flight time between collisions, then Jk ’ pkl ¼
constant, where l(t) is the (decreasing) distance between the two
centers. Formula (5) immediately follows from the last relation.

The average time needed to complete the cycle is

#th i ¼ 2
k
c%

# $
¼ 4

k
c
;

where we substituted k for an averaged distance between scat-
tering centers. Now we can write

dp

dt
) ṗ ’ #ph i

#th i
¼ 1

3
p
#U

k
:

As long as kTLp, one can approximate #U as

#U ’ #k
@U

@z
;

so that the local acceleration rate is

ṗ ’ # 1

3
p
@U

@z
: ð6Þ

We observe that the particle mfp dropped out of the acceleration
rate in the smooth part of the shock structure, in contrast to the
linear acceleration regime that occurs at the shock discontinu-
ity. The last formula is, of course, consistent with the standard
diffusion convection equation,

@f

@t
þ U

@f

@z
# @

@z
!
@f

@z
¼ 1

3

@U

@z
p
@f

@p
; ð7Þ

if one considers its characteristics, ignoring diffusion effects.1

Then in the vicinity of the (abrupt) momentum cutoff pmax, the
main terms in equation (7) are the first one on the left-hand side
and the acceleration term on the right-hand side. This clearly
shows that a (front) solution propagates in momentum space at
the speed given by equation (6), basically independent of z and
!. It is important to emphasize, however, that the independence
of the acceleration rate of the particle diffusion coefficient (or
mfp, as shown above) does not mean that the acceleration is
faster than in the linear case where such dependence is the main
factor making the acceleration relatively slow. The reason is
very simple. The derivative @U/@z in equations (6) and (7) itself
depends on !. Indeed, estimating @U/@z as

@U

@z
’ U1

Lp
’ U 2

1

! p"ð Þ
; ð8Þ

one sees that the acceleration time is "acc! ! p"ð Þ/U 2
1 ; i.e.,

particles with momenta p ! p" are accelerated approximately at
the same rate as in the linear theory (apart from a numerical
factor O(1); see Malkov & Drury [2001]). Clearly, since the
local (i.e., inside of the CRP) acceleration rate is independent of
momentum, particles with p < p" accelerate more slowly than
the linear theory acceleration rate, while particles with p > p"
accelerate faster rate than in linear theory and may in principle
be accelerated faster than the Bohm rate. The overall acceler-
ation process is illustrated in Figure 2, depending on whether
the pressure-dominant momentum p* is stopped from growing
after some t ¼ t". If it is, particle momentum grows exponen-
tially; otherwise, it continues to grow linearly in time.
There are two problems with realization of this possibility.

First, because in the nonlinear acceleration regime the spectrum
at the upper cutoff is flatter than p#4 (it actually flattens to p#3.25

at pmax [Malkov 1997] in the limit of high Mach number and

1 As was shown by Malkov & Drury (2001), there is a reason to do so in cer-
tain situations. In particular, under a strong nonlinear shockmodification andBohm
diffusivity (! / p), the velocity profile is linear, i.e., @U /@z ’ constant in a sig-
nificant part of the CRP.

Fig. 1.—Flow velocity profile in a CR dressed shock (solid curve). Hatched
circles represent two scattering centers moving with the flow and approaching
each other at a speed #U. The filled circles depict a CR particle after the first and
second collision (see text).
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pmax 3mc), p" is clearly identifiable with pmax. Therefore, unless
the spectrum slope changes at p ! p" , it is difficult to accelerate
particles beyond p". This is why the acceleration rates in both lin-
ear and nonlinear regimes are similarly slow, although for rather
different reasons. In the linear regime, the acceleration rate slows
downwith time since the acceleration cycle duration, " cycl , grows
with momentum (as the gyroperiod does), so the particle momen-
tum grows only linearly with time. In the nonlinear regime, the
width of the shock grows linearly with p", so that the acceleration
rate (8) decreases with p" (not with p) and p" also grows linearly
with time. Clearly, the first requirement would be to stop p" from
growing at some point or at least to slow down its growth consid-
erably. If p" ¼ constant, then particles with p > p" increase their
momentum exponentially (eqs. [6] and [8]).

One simple reason for the saturation of p"(t) is a geometric
one. The thickness of the CR cloud ahead of the subshock, Lp( p"),
cannot exceed the accelerator size, i.e., some fraction of the shock
radius Rs, in a SNR, for example, (e.g., Drury 1983; Berezhko
1996). Thus, we may identify p" with the maximum momentum
achievable in an SNRbut limited by the geometric constraints, not
by the lifetime of SNRs. What is also required here is that, along
with or, independent of this geometric limit to p", the character of
particle confinement to the shock changes at p" when p" reaches
some critical value. This should lead to a break in the spectrum at
p ! p", such that its slope at p > p" is steeper than p#4 and flatter
at p < p". Then the main contribution to the particle pressure
would come from particles around p".

For example, the spectral break may be initiated by a strong
shock modification by accelerated particles (Malkov et al. 2002).
Namely, Alfvén wave compression in the CRP shifts the waves to
the short-wavelength end of the spectrum, leaving particles with
p > p"without the resonant waves. In fact, some of those parti-
cles still remain resonant with the waves with k * r#1

g ( p") ) k"
as long as their pitch angles satisfy the condition p% < m!c /k",
where % is the cosine of the pitch angle and !c is the gyrofre-
quency. At the same time, the number of these resonant particles
rapidly drops with momentum since their pitch-angle distribution
is limited by %j j < m!c /k"p, and they can hardly form a good pool

for the acceleration. Rather, the momentum spectrum can be
shown to decay exponentially at p > p".

However, the latter example is based on a weak-turbulence
picture inwhich a sharp resonance of particles with waves of ran-
dom phases determines particle dynamics. As we demonstrate
below, strong magnetic field perturbations result in a quite differ-
ent character of particle confinement. In x 3 we consider a scat-
tering environment that (although still simplified) retains some
important characteristics of a more realistic strongly unstable
turbulent CRP. As discussed earlier in this section, this turbu-
lence should satisfy the following two conditions: (1) particles
with momenta p > p" should not suffer catastrophic losses, and
(2) their spectrum must nevertheless be steeper than p#4. As
we demonstrate in xx 3 and 4, a gas of relatively weak shocks,
which can emerge in a number of ways, provides the required
scattering.

3. PARTICLE DYNAMICS

The conventional paradigm of particle transport in shock envi-
ronment is the diffusive pitch-angle scattering on self-generated,
randomphaseAlfvén waves. The resulting spatial transport is also
diffusive with a coefficient that scales with the wave amplitude as
! pð Þ / #B#2

k , where the fluctuation wavenumber kmust be set in
the resonance relation with the particle momentum, krg pð Þ ’ 1.
While this is themost consistent plasma physics approach that can
be derived from first principles using the quasi-linear theory, pro-
vided that #BTB0, there is no guarantee that it holds when the
waves go nonlinear (e.g.,Völk et al. 1984;Achterberg&Blandford
1986). The latter is the rule rather than an exception in shock en-
vironments, which has been documented via observations, theory,
and numerical studies. So the Earth’s bow shock, as well as inter-
planetary and cometary shocks, reveals a variety of coherent non-
linear magnetic structures. Usually, they originate upstream as a
result of nonlinearly developed instability of the distribution of
ions reflected from the shock in the case of oblique propagation. If
the shock is quasi-parallel, the unstable ion distribution forms by
thermal leakage from the downstream plasma. In cometary plas-
ma, the pick-up ions drive the instability. Very often the magnetic
structures are observed as an ensemble of discontinuities referred
to as shock trains or shocklets (Tsurutani et al. 1987). There is no
shortage of theoretical models describing these features, and we
briefly return to them below. Standing somewhat outside of these
models, but perhaps more specific to the nonlinear CR shocks, is
the acoustic instability driven by the gradient of the CR pressure in
the CRP. It was first studied by Drury (see, e.g., Drury & Falle
1986; Zank et al. 1990; Kang et al. 1992, and references therein),
and it also evolves into a gas of moderately strong shock waves
propagating toward the main shock (subshock) in the CRP. In
what follows in this section, we assume that the shock precursor is
filled with the gas of such shocks separated by some distance L.

Let us consider such a shock train propagating in the CRP.
Obviously the relative speed between the individual shocks and
the speed of the bulk flow is small compared to the particle speed,
U zð ÞTc. Therefore, we can consider the problem of particle
scattering by scattering centers (shocks) and particle acceleration
caused by the relative motion of the scattering centers, separately.
Note that the acceleration part of the problem has been prelimi-
narily considered in x 2, and we return to it in x 6. Turning here to
the scattering part of the problem, we assume for simplicity that
the shocks are one-dimensional and propagate at the same speed
along the shock normal. Furthermore, we transform to their ref-
erence frame, neglecting compression by the main flow U(z) and
their relative motion. Even under these simplifications, the shock
train magnetic structures can be still rather complicated. For

Fig. 2.—Schematic representation of acceleration process. Up to the time t"
the acceleration proceeds at the standard rate, which is similar during both the
linear and nonlinear phases (solid line). The particle pressure-dominant mo-
mentum p"(t) grows as the maximum momentum of the entire spectrum. If for
t > t" the pressure-dominant momentum p" remains flat (solid line), particles
with p > p" maintain the same acceleration rate that they had when their mo-
mentum was equal to p" (dashed line). The dash-dotted line shows for com-
parison how the maximum momentum pmax ¼ p" would continue to grow after
t ¼ t", had p"(t) not stopped growing at t ¼ t". [See the electronic edition of the
Journal for a color version of this figure.]
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example, they have been extensively studied in the frame of the
so-called derivative nonlinear Schrödinger equation and its mod-
ifications (Medvedev & Diamond 1996). Alfvén–ion acoustic
wave coupling results inwave steepening and gives rise to a shock
train. A kinetic effect included in this model is particle trapping,
which was shown to be important for the formation of the shock
train and which has been studied numerically (Hada et al. 1990;
Medvedev et al. 1997). In another model, the shock train forms
from a balance of a quasi-periodic driver and the nonlinearity of
the magnetic field perturbations. The driver may originate from
one or a few unstable harmonics providing the smooth parts of the
solution that steepen into shocks. These shocks also have a com-
plicated spatial structure, typically characterized by a fast rotation
of the magnetic field vector, caused by dispersion (see Malkov
1996, and references therein). However, since the gyroradius of
high-energy particles, even if reduced by possible magnetic field
amplification, is still much larger than both the width of the shock
transition and the dispersive scale c/!pi, we replace each shock by
a discontinuity of a coplanarmagnetic field.A different possibility
that results in a similar behavior of themagnetic field occurswhen
the strong Drury instability discussed earlier evolves into an en-
semble of moderately strong shocks.

Both cases are covered by the following representation of
the magnetic field, which corresponds to a periodic sequence of
shocks, in which only one component of the field varies with the
coordinate in a comoving reference frame,B ¼ 0; By; 1

% &
, where

By zð Þ ¼ By þ B̃y sin & z# 1=2ð Þ½ , tanh 1

'
cos & z# 1=2ð Þ½ ,

' (
:

ð9Þ

Here By is the constant component of the transverse to the shock
normal component of the magnetic field, and B̃y characterizes
the strength of the shocks in the shock train (both normalized to
the constant z-component, B0; Fig. 3). We normalized the coor-
dinate z to the distance between shocks L. Of course, in reality,
different shocks in the shock train do not have the same strength
so that the coefficient B̃y should be replaced by a stochastic
variable with a probability density function (pdf ), inferred from
the shock dynamics. We return to this discussion in x 4, but in
this simplified study we assume all the shocks in the shock train
have the same strength.

Let us consider particle dynamics in the magnetic field given
by equation (9). It is convenient to write the equations of motion

using dimensionless variables in which time is normalized to
L/c. Since we are primarily concerned with the dynamics of par-
ticles having momenta pk p" 3 mc, we normalize their speed
to the speed of light and set the absolute value of particle velocity
to unity, V - 1. The remaining variable p is normalized naturally
so that the corresponding gyroradius rg( p) is measured in the
units of L; that is, the particle momentum p is scaled to eB0L /c.
We also introduce the cosine of the pitch angle % ¼ pz /p. The
equations of motion read

ṗ ¼ n <B; ð10Þ
ż ¼ %; ð11Þ

where n ¼ p/p and p ¼ constant.
Figure 4 shows particle trajectories as a Poincaré section that

represents orbit crossings of the shocks, i.e., the planes z ¼ j
(where j is an integer) on the gyrophase–pitch-angle plane, ((,
%). To make a connection with the drift approximation, we have
transformed the particle momentum to the coordinate system ro-
tated around the x-axis by the angle # ¼ tan#1By. In this coordi-
nate system, particles spiral around the z-axis with % ¼ constant
if B̃y ¼ 0. The gyroradius is taken to be equal to the distance be-
tween the shocks ( p ¼ 1, resonant case in terms of the linear the-
ory), but the shock transitions are broad so that no distinct shocks
with the steep magnetic field gradient are present and the parti-
cle dynamics remains largely regular. For smaller p the system
becomes almost integrable since it can be reduced to a two-
dimensional one, because the particle magnetic moment is con-
servedwith good accuracy. In the case shown in Figure 4, however,
some of the separatrices are clearly destroyed. Nevertheless, there
is a clear separation of trapped (magnetic mirroring) and pass-
ing particles. Based on the conservation of the first adiabatic in-
variant I / 1# %2ð Þ/B (magnetic moment), the trapped particles
must be confined in momentum space to %j j<%crit ¼ Bmax #ð½
BminÞ/Bmax,1/2 - 0:27, which is close to what can be seen from
Figure 4. It is important to emphasize here that the trapping area
does not shrink with p, as was the case in the linear resonance
situation, discussed at the end of x 2. Clearly the spatial transport
of these particles is nondiffusive. The trapped particles are con-
vected with the shock train. The untrapped particles ( %j j> %crit)
propagate ballisitically and escape from the CR cloud. Thus, even

Fig. 3.—The y-component of the magnetic field in the shock train given by
eq. (9) for ' ¼ 0:2, B̃y ¼ 1, and By ¼ 2.

Fig. 4.—Particle orbits shown for ' ¼ 0:5, By ¼ 2, and B̃y ¼ 0:3 in eq. (9)
and p ¼ 1 on the ((, %) plane. Each dot corresponds to the intersection of
particle trajectories with one of the planes located at an integer z and coinciding
with the shock locations (Poincaré section). Several particle orbits form invar-
iant curves (Kolmogorov-Arnold-Moser tori), as well as stochastic layers around
some of the separatrices (see text).
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a small-amplitude (coherent) shock train provides a substantially
different confinement of particles than the small-amplitude ran-
dom ensemble of Alfvén waves does. It ensures perfect confine-
ment of trapped particles and no confinement at all of untrapped
particles. This is what is required for the acceleration mechanism
outlined in x 2. When this confinement regime takes over above
some p ¼ p", since there are no resonantwaves of the length larger
than rg( p"), the energy spectrummust become steeper for p > p".
We come back to this point in x 6.

The dynamics changes evenmore dramatically when the thick-
ness of the shocks in the shock train becomes small compared to
the particle gyroradius. Taking the same parameters in equa-
tion (9) as those used in Figure 4 except for ' - 0,we show inFig-
ure 5 the Poincaré section created by a single trajectory. It should
be noted, however, that the actual amplitude of the shocks also
increases somewhat in this case, even though the amplitude pa-
rameter B̃y is fixed. The phase space is now a ‘‘stochastic sea’’
with embedded ‘‘islands’’ of quasi-regular motion, quite typical
for the deterministically chaotic systems (see, e.g., Lichtenberg &
Lieberman 1983). The dynamics inside the islands is weakly sto-
chastic, so that the particle trajectories there are closer to the nearly
integrable case, shown in Figure 4, than in the rest of the phase
plane. Therefore, within those islands where the averaged pitch
angle % 6¼ 0, particles propagate ballistically in the z-direction,
similar to the untrapped particles in the previous example. There
are also islands where % - 0, and particle propagation is sub-
stantially suppressed there. The islands are stochastic attractors,
and the mapping exhibits cycling around them apart from the
quasi-periodic motion inside islands, not shown in Figure 5. Note
that only a single trajectory is shown. The first type of island
(% 6¼ 0) is responsible for Levy flights (ballistic mode of particle
propagation), whereas the second type of island (% ¼ 0) repre-
sents long rests or traps. The rest of the phase plane is covered by
the region of a global stochasticity where particle propagation
appears to resemble that around the islands but with shorter rests
and Levy flights. Note that we use the term Levy flights for the
above transport events even though the probability distribution
function of the jump lengths might have a finite first moment
(mean jump length). We investigate particle propagation in the
z-direction in more detail in x 4.

4. PARTICLE TRANSPORT

It is useful at this point to recall that in the standard diffusive
shock acceleration the pitch-angle diffusion determines the spa-

tial transport, which is also diffusive. This picture results from the
scattering of particles by Alfvén waves of small amplitude and
random phases. By contrast, in x 3 we have considered a coherent
magnetic structure of the finite amplitude shocks, as an alternative
particle scattering agent at momenta higher than the pressure-
containing momentum scale p". Despite the coherence, the par-
ticle dynamics, as we have seen, remains strongly chaotic, and the
onset of stochasticity depends on both the amplitude of the shocks
and their thickness. We thus appeal here to the intrinsic stochas-
ticity caused by unpredictable particle motion in a field that can be
perfectly regular. The fact that in a real situation the field is also
random is often assumed to be of secondary importance.

The resulting spatial transport is not a ‘‘classic’’ diffusion pro-
cess. The connection between the particle dynamics, represented
by the Poincaré section shown in Figure 5 and the particle spatial
transport can be most easily understood by considering equa-
tion (11), ż ¼ %, as a stochastic differential equation, in which %
is a random process. Some general characteristics of this process
can be inferred from the Poincaré section shown in Figure 5. As
we mentioned above, there are traps represented by islands that
translate into long flights or long rests depending on whether the
averaged value of %, i.e., % is nonzero or zero, respectively. Here
the averaging is to be taken over an island attractor that is a layer
of enhanced phase density around the island.

The particle transport can be conveniently treated as a ran-
dom walk on a lattice of shocks located at the integer values of
z. However, in contrast to the classical random walk, this is a
non-Markovian process since it is characterized by long rests
(Zaslavsky 2002). Particles interact with the same shock repeat-
edly while they are trapped near an island with % ¼ 0. Similarly,
they perform a long jump in one direction and cross many shocks
in a rowwhile they are trapped in the phase space around an island
with % 6¼ 0.

The particle trajectory that corresponds to the Poincaré section
shown in Figure 5 is demonstrated in Figure 6. The trajectory is
indeed nondiffusive. It consists of long ‘‘Levy flights’’’ that con-
nect areas (clusters) of a rather slow particle propagation. Such
clustered propagation regime is quite typical for nonlocal (frac-
tional) diffusion models (see, e.g., Metzler & Klafter 2000). The
propagation within a typical cluster is magnified and shown in
the inset of Figure 6. A certain similarity with the dynamics at

Fig. 5.—Same as Fig. 4, but for the narrow shock transitions, ' - 0. In contrast
to Fig. 4, however, the entire phase portrait is formed by a single particle orbit that
does not visit the ‘‘holes’’ in the phase space.

Fig. 6.—Particle trajectory represented as z(t) that corresponds to the phase
space shown in Fig. 5. It starts close to the islands near % ¼ 0 so that the orbit
stays close to the origin (z ¼ 0) for a long time. Such long rests will be repeated
many times at different locations. Overall, particle transport is organized in clus-
ters (five such clusters are shown) where the transport is strongly suppressed.
The clusters are connected with long jumps where the transport is ballistic.
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large can be noted, which is also not unusual for the determin-
istically chaotic dynamical systems. However, the intracluster
Levy flights are significantly shorter than the intercluster ones,
an effect that is shown to be much stronger for stronger shocks.
Besides, long rests at different shocks can be seen inside the clus-
ters. Note that it is this intracluster particle dynamics that ensures
their confinement to a localized region of the flow convected
across the CRP as described in x 2. As we argued there, every
such passage through the CRP approximately doubles the par-
ticle momentum. The Levy flights, on the other hand, can result
in the escape of a particle from the shock precursor. We quan-
titatively describe and compare both possibilities in x 6.2.

Let us come back to the overall dynamics. There are two im-
portant characteristics that describe the random walk process.
These are the waiting time and the jump length pdf. We have ob-
tained these quantities from the trajectory shown in Figure 6. The
waiting time distribution at different shocks is shown in Figure 7.
Due to the gyromotion of particles near the shocks, the pdf is
not smooth, but it has a smooth envelope that decays approxi-
mately as "#3, where " is the waiting time. The distribution of
the lengths of the Levy flights is presented in Figure 8. Because
of the asymmetry of the shock train (Fig. 3), there is a distinct,

directional asymmetry of the jumps. Otherwise, they exhibit an
approximate power-law distribution up to the jumps having
lengths limited by about 10. The pdf describes both the intra-
cluster and intercluster particle jumps, but only the jumps of the
first type are suitable for the continuous acceleration. The longer
jumps, as we estimate in x 5, generally result in the loss of par-
ticles. Another way of representing the trajectory clustering is il-
lustrated in Figure 9, where the distribution of numbers of visits
of different sites in the shock train is shown.
The knowledge of the waiting time and jump distributions is

necessary to derive the formof the adequate operators in the trans-
port equation, (e.g., Metzler & Klafter 2000). Due to the non-
Markovian character of transport, these operators are integral (also
called fractional differential operators, due to the memory in sto-
chastic trajectories) rather than conventional diffusion operators.
In x 6 we shall take a somewhat simpler approach, which, how-
ever, also requires the flight–rest-time pdf to determine the trans-
port coefficients.
Up to nowwe have numerically examined the particle transport

in shock trains of a period longer or equal to the particles’ gyro-
radii. This corresponds to the resonantwave-particle interaction in
the small-amplitude limit. Obviously, even in the case pT1,
there are resonant Fourier components in the shock train, since its
spectrum decays as k#2 for k > 2& (recall that the shock train
period is set to unity). This is illustrated by Figure 10, where

Fig. 7.—Waiting time distribution in a log-log format. Here n is the number
of times the orbit has spent time " at any shock in the shock train. A somewhat
discrete character of distribution is related to the gyromotion of particles near
a shock so that when they interact with the shock repeatedly, the interaction
time is commensurate with the gyroperiod. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 8.—Distribution of Levy flights shown for forward and backward jumps.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 9.—Distribution of number of visits of different shocks in the shock train.
The magnified box shows the distribution inside of one of the clusters (see text).

Fig. 10.—Same as Fig. 6, but for smaller particle momenta, p ¼ 0:1 and 0.3.
[See the electronic edition of the Journal for a color version of this figure.]
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particle trajectories with smaller momenta are shown. It should
also be noted, however, that particles with smaller gyroradii, such
as pP p", can be efficiently confined due to the resonance with
self-generated waves since, as we argued earlier, their population is
significantly more abundant than those with p> p" because of the
steeper spectrum in this momentum range. This result is confirmed
later. It is clear that, nomatter how long the period of the shock train
is, we need to estimate the confinement of particles with a gyro-
radius larger than that period, i.e., those with p> 1. One can expect
that their confinement will progressively deteriorate due to the
fact that there is only a high-frequency force acting on these par-
ticles. To estimate the fraction of p31 particles that can be con-
fined, we write equation (10) in the form of the following system
of equations:

(̇¼ # 1

p
þ B̃y zð Þ%

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# %2

p sin (ð Þ; ð12Þ

%̇¼
B̃y zð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# %2

p
cos (ð Þ; ð13Þ

p ¼ constant;

where we have assumed for simplicity that By ¼ 0. Because
B̃y zð Þ has zero average, ( and % are the particle gyrophase and
the pitch angle, respectively, with respect to the shock normal.
Assuming %T1 (which we verify below), from equations (11)
and (13), we then obtain

z̈# 1

p
B̃y zð Þ cos (ð Þ ¼ 0: ð14Þ

Considering ( as slowly varying compared to z and %, we can
integrate the last equation once:

p

2
ż2 þ A zð Þ cos (ð Þ ¼ constantþ O p#1

% &
; ð15Þ

where we have introduced a periodic function A(z) according to
B̃y zð Þ ¼ #@A/@z. Since ( is a slowly varying variable (it varies
on a timescale p3 1, while z and % vary on a timescale

ffiffiffi
p

p
),

equation (15) describes an oscillator lattice with a slowly vary-
ing potential as shown in Figure 11. The factor cos (ð Þ in equa-
tion (15) slowly inverts the lattice potential. However, trapped
particles do not detrap completely but rather get trapped in one

of the nearby potential wells. The width of the trapping zone in
ż and thus in % is given by %j j< %s, where

%s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
Amax # Aminð Þ

s

T1:

For B̃y zð Þ given by equation (9), we obtain Amin ¼ #Amax

and Amax ¼ B̃y/2&. Particles with %j j> %s are not confined
to the shock train and propagate ballistically.

To conclude this section, we emphasize that when themomen-
tum of particles grows and their Larmor radius increases beyond
the distance between the shocks, the fraction of particles that do
not escape ballistically shrinks with momentum as %s / 1/

ffiffiffi
p

p
(Fig. 12). This is slower than in the standard, weakly turbulent
picture, in which the critical value of % decays as 1/p. On the
other hand, the latter dependence is based on the linear cyclotron
resonance without broadening, while the resonance broadening
also improves the confinement (Achterberg 1981). In any case,
one has to expect the spectral cutoff at p ! 1 in units used in this
section (the Larmor radius is of order the shock spacing). There-
fore, the characteristic distance between shocks determines the
maximum momentum of accelerated particles. Of course, in a
real situation there is a continuous strength/distance distribution
of shocks that should produce a smoother spectrum decay at the
cutoff momentum. Here we merely estimate the maximum dis-
tance that is equivalent to the minimumwavenumber in the stan-
dard acceleration picture. In the framework of the acceleration
mechanism considered in this paper, the minimum wavenumber
of the randomly phased Alfvén waves should be of the order of
r#1
g p"ð Þ, while particles with the momenta p" < p < 1 are con-
fined via themechanism of interaction with the shock train. In x 5
we estimate the distance L between the shocks and thus pmax,
since rg pmaxð Þ ’ L, again, similarly to the standard estimate
rg pmaxð Þ ’ k#1

min.

Fig. 11.—Potential A zð Þ cos (ð Þ in eq. (15), corresponding to the magnetic field
By ¼ #@A/@z, given by eq. (9) with ' ¼ 0 and By ¼ 0. The function A zð Þ ¼
B̃y/&
% &

cos & z# 1/2ð Þj j # 1/2½ ,. Solid line: cos (ð Þ ¼ #1; dashed line: cos (ð Þ ¼ 1.

Fig. 12.—Phase space of particles in pitch-angle–momentum representation.
The shaded area ( pinj < p < p"; %j j < 1) corresponds to the conventional par-
ticle confinement via randomly phased Alfvén waves. For higher momenta,
p > p" [if there were only weakly turbulent waves present with minimum
wavenumber, k ¼ kmin ¼ 1/rg p"ð Þ], this type of particle confinement would be
limited to %j j < %c / 1/p because of the resonance condition krg pð Þ% ¼ 1. A
shock train with the spacing rg p"ð Þ < L < rg 1ð Þ confines particles similar to the
mirroring-type confinement %j j < %c ¼ !B/Bð Þ1/2 (hatched area), except for
the phase-space fragmentation (see Fig. 5 and text). Beyond p ¼ 1 the particle
confinement deteriorates to %j j < %s / 1/

ffiffiffi
p

p
(see text).
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5. ESTIMATE OF THE MAXIMUM MOMENTUM

In this section we estimate the maximum distance between the
shocks in the shock train, which, according to x 4, is directly
related to the maximum momentum. In what follows we assume
that the shocks are formed due to the development of an acoustic
instability driven by the CR pressure gradient in the CRP. The
latter has the scale height Lp as being created by particles accel-
erated in a standard DSAmanner and having maximummomen-
tum p". Specifically, Lp ’ ! p"ð Þ/U1. As was demonstrated by
Drury & Falle (1986), the linear growth rate of this instability
can be written as

).
D ¼ # )c Pc

$!
. Pc

Cs$
1þ @ ln !

@ ln $

! "
: ð16Þ

Here Pc and Pc are the CR pressure and its gradient (which
is antiparallel to the shock normal), respectively; )c is their
adiabatic index; $ is the plasma mass density; and Cs is the sound
speed. For efficiently accelerating shocks, one can assume )c -
4/3. The first term in equation (16) represents the wave damping
caused by CR diffusion, calculated earlier by Ptuskin (1981). The
second term is positive for the waves propagating along the pres-
sure gradient,while the oppositely propagatingwaves are damped.
The factor in the parentheses can reduce or even completely elim-
inate the instability if @ ln ! /@$¼ #1. However, there are no
physical grounds on which this particular selection should be
made (Drury & Falle 1986). It should also be noted here that
particle diffusivity ! refers here to particles with pP p", while the
transport of higher energy particles is nondiffusive.

Within the approximation leading to the growth rate given by
equation (16), there is no dependence on the wavenumber. A
more thorough investigation can be found in Kang et al. (1992),
which shows that the wavenumber dependence is indeed not
strong. Under these circumstances it is reasonable to assume that
the largest seed waves are the most important ones. Furthermore,
we assume that the latter are related to the cyclotron instability
of the Alfvén and magnetosonic waves (which can provide the
compressional seed component) that have excited by the accel-
erated particles with momenta pP p", since particles of higher
momenta have a steeper spectrum and do not contribute signif-
icantly to the growth rate of the cyclotron instability. We should
focus primarily on the farthest part of the precursor, since per-
turbations starting to grow there have the best chances to develop
fully while convected with the flow toward the subshock. This
part of the precursor is accessible only to the particles near the
maximum momentum achievable within the standard accelera-
tion scenario, i.e., p". Hence, we assume that the typical wave-
length of the Drury instability is kD! rg p"ð Þ.

While these perturbations grow to a nonlinear level and prop-
agate with the flow toward the subshock, they also steepen into
the shocks. This behavior is seen in both two-fluid simulations of
Drury & Falle (1986) and, what is particularly relevant to our
study, in the kinetic simulations of Kang et al. (1992). Due to the
significant difficulties in the numerical realization of the kinetic
model, this study is limited in the maximum particle momentum,
and thus in the length of the CRP, Lp. Besides that, a mono-
chromatic wave has been chosen as a seed for the instability. As a
result, no significant interaction between the shocks has been
observed. In a more realistic situation with a much longer pre-
cursor and shocks of varying amplitudes, strong interactions be-
tween shocks are to be expected (e.g., Gurbatov et al. 1991). In
particular, stronger shocks overtakeweaker ones and absorb them,
so that the interaction has a character of inelastic collisions. Time

asymptotically, such decaying shock turbulence is characterized
by decreasing spatial density of the shocks.
In the context of the present study, we must consider driven,

rather than decaying, turbulence. A simple version of the driven
Burgers model that reveals shocks merging and creation of new
shocks has been considered by Malkov et al. (1995). In the case
of driven turbulence, shocks not only merge, but also new shocks
are formed in between them. The new shocks merge with their
neighbors and so on. In a steady state, some statistically stationary
ensemble of shocks can be assumed with a certain average dis-
tance L between the shocks and a shock strength characterized by
an average Mach number M. For a systematic study of particle
propagation in such a gas of shocks, the pdfs of Mach numbers
and distances between shocks are clearly required (Bykov &
Toptygin 1981; Webb et al. 2003). As we mentioned above, we
make here only rough estimates of these quantities. In any event,
for the generation of a statistically stationary shock ensemble, the
instability should act faster than the convection of a fluid element
across the precursor does, which requires)DLp /U131. The latter
condition can be transformed to the following,

Pc

$U1Cs
31: ð17Þ

Note that the last condition does not contain the precursor scale
Lp and can also be represented as *M 31, where * ¼ Pc /$1U 2

1 .
With Pc referring here to its subshock value, * is the acceleration
efficiency, andM ¼U zð Þ/Cs is an acoustic Mach number of the
flow. Not surprisingly, the criterion *M 31 differs from the
condition #B2/B2

0 31 only by a factor ofM /MA ¼ 1/
ffiffiffi
+

p
, which

follows from equation (1). Indeed, both instabilities share the
same source of free energy, the CR pressure gradient.
Now that we can assume that the Drury instability has suffi-

cient time to fully develop to a nonlinear level, we need to ex-
amine whether the nonlinear stage of the wave steepening lasts
longer than the linear one. For the wave breaking time being
shorter than the linear growth, it is sufficient to fulfill )D <!v/L,
where !v is the characteristic magnitude of the velocity jump
across the shocks and L is the characteristic distance between
them. The last condition can be rewritten as

L

Lp
<

!v

U1

1

*M
: ð18Þ

Under these circumstances, in a steady state shock merging
must be equilibrated with their growth due to the instability, i.e.,
)D! #v/L, where #v is the characteristic variation of the shock
strength, i.e., the rms difference between neighboring values of
!v. The latter condition can be written as

L

Lp
! #v

U1

1

*M
: ð19Þ

Among the three parameters entering the last expression, #v/U1,
*, andM, only the local Mach numberM(z) needs special atten-
tion. Indeed, the far upstream M is considered to be prescribed
and may be very large, but because of the multiple shock for-
mation in the CRP, strong heating should occur and drive this
parameter down considerably.
Let us estimate the local Mach numberM. There are two major

factors determining this parameter. After a fluid element passes
through a shock in the shock train, it gets heated, but it cools adi-
abatically before it crosses the next shock. For this rough estimate
we can assume that all shocks are of the same compression ratio
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and that the overall flow pattern is L-periodic. For this order-of-
magnitude type of estimate, we neglect the gradual variation of the
flow at the scale Lp > L. We thus assume that the flow speed in
front of each shock is v1 and is equal to v2 ¼ v1/r behind it, where r
is the shock compression ratio. Similarly, the densities are related
through $2 ¼ r$1.We estimate the shock heating from the standard
Rankine-Hugoniot relations. Let us denote the gas pressure in front
of a shock in the shock train asPg1. Then, the gas pressure behind it is

Pg2 ¼
2)M 2 # ) þ 1

) þ 1
Pg1:

The subsequent decompression phase decreases the pressure so
that it becomes equal to P 0

g1 ¼ r#)Pg2 in front of the next shock.
Combining this with the above equation, we obtain

P 0
g1

Pg1
¼ ) # 1þ 2=M 2

) þ 1

! ")
2)M 2 # ) þ 1

) þ 1
:

Therefore, the total pressure change after passing trough the
shock and the smooth flow behind it is zero only for M ¼ 1.
However, the pressure does not really change for a broad range
of Mach numbers around M ¼ 1 (where the right-hand side of
the last expression is close to unity). This result means that M
cannot be large, since it would lead to strong plasma heating
driving its temperature to a state with M ’ 1. However, in this
situation the calculation of heating using the Rankine-Hugoniot
relations is not correct, since shocks are likely to be subcritical.
Note that in our estimates, we also ignored the increase of mag-
netic energy behind the shocks. Since the above estimates show
that shocks cannot be highly supercritical also, we conclude
that a reasonable estimate forM to substitute in equation (19) is
a critical value of the Mach number, i.e., M ’ M", which is of
order a few (M" ’ 3, for example), depending on plasma + and
#nB, the angle between the shock normal and the magnetic field
(see Sagdeev 1966; Papadopoulos 1985, for a review of colli-
sionless shock physics).

The efficiency *may then be calculated once the heating rate is
known (see, e.g., Malkov & Drury 2001). We note that the effect
of the precursor heating on the shock structure and thus on * is
very sharp for a certain range of the heating rate parameter. The
latter is difficult to quantify, so that we assume here that it is be-
low the critical value at which a strong effect on the shock struc-
ture is expected. As for the parameter #v/U1, the first obvious
constraint is #v <!v, which obviously verifies the consistency
of equations (19) and (18). In fact, based on the studies of the
driven Burgers turbulence (Cheklov & Yakhot 1995; Gotoh &
Kraichnan 1998), we can assume that the shock strength vari-
ance #v and its mean !v are related by #v P!v.2 At the same
time!vmay be assumed to be not so much weaker than the sub-
shock itself (Drury & Falle 1986; Kang et al. 1992). The sub-
shock strength can be calculated from nonlinear acceleration
theory (Malkov 1997; Blasi 2002; Blasi et al. 2005), along with
the acceleration efficiency. Given the uncertainty of the heating
rate, one can estimate * ! 1

5
1
3, so that the estimate L/Lp! 1

5 does
not seem to be totally unreasonable.

As follows from x 4, themaximumparticlemomentumcan be es-
timated from the relation rg pmaxð Þ! L. Bearing in mind that Lp ’
rg p"ð Þc/U1, the maximum momentum pmax can be estimated as

pmax
p"

’ c

U1

L

Lp
:

Since L/Lp, as we argued, can be not very small and c/U1 is a
large parameter, the suggested mechanism can produce a sig-
nificant additional acceleration beyond the break momentum
at p ¼ p". This stage of acceleration lasts for approximately
"acc pmaxð Þ! ! p"ð Þ/U 2

1

* +
ln pmax/p"ð Þ.

6. PARTICLE SPECTRUM BETWEEN THE BREAK
AND MAXIMUM MOMENTUM

Up to nowwe have calculated the particle energy gain by their
scattering on unspecified scattering centers carried by the con-
verging flow in the CRP. Independently of that, we then consid-
ered the scattering of particles on an ensemble of shocks. The
latter process did not lead to energy gain, since no relative motion
between the scatterers was assumed. Recall that we considered the
simple shock ensemble as a magnetic structure traveling at a
constant speed. Nevertheless, each shock in the shock train may
possess its own flow structure with upstream and downstream
regions and thus can, in principle, accelerate particles via the stan-
dard DSA mechanism. However, as we pointed out earlier, these
shocks do not have sufficient resonant turbulence upstream and
downstream with k < 1/rg p"ð Þ. Therefore, there is no sufficient
coupling of particles withmomenta p > p" to the converging flow
around each such shock in order to gain momentum.

In the situation we consider further in this section the mo-
mentum gain results from the combination of particle scattering
off the scattering centers (shocks, localized magnetic structures)
and gradual flow compression, leading to the convergence of the
centers. In fact this is similar to what we have considered in x 2 at
an elementary level. An essential difference is that the scattering
in momentum space is not homogeneous as the results of x 3
suggest. Therefore, we relax the assumption, also made in x 2,
that particle transport in momentum space is diffusion that
evenly covers isoenergetic surfaces. This affects the formula for
the momentum gain.

6.1. Particle Momentum Gain

To calculate the rate at which particles gain momentum, let us
write down the equations of particle motion in the subshock
reference frame and apply them in the area ahead of the subshock
where the velocity of the flow is U z; tð Þ ¼ U z; tð Þez (with the
z-axis pointing in the shock normal direction, ez),

dp

dt
¼ e

c
v# Uð Þ < B: ð20Þ

In this approximation, we have replaced the electric field by
E ¼ #c#1U <B, assuming that due to the perfect conductivity
the electric field vanishes in the local plasma frame. In contrast
to x 3, we do not specify the distance between the scattering
centers here, so it is convenient to normalize the length to c/!ci ,
time to !#1

ci , p to mc, and v and U(z) to c.
Introducing the cosine of the particle pitch angle to the shock

normal, %, as well as the particle gyrophase, (, as in x 4, it is
useful to rewrite the equations of motion given by equation (20)
as

ṗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# %2

p
U Im be#i(

% &
; ð21Þ

%̇ ¼ 1# %U

pU
ṗ; ð22Þ

(̇ ¼ # 1

p
þ %# Uffiffiffiffiffiffiffiffiffiffiffiffiffi

1# %2
p Re be#i(

% &
; ð23Þ

ż ¼ %: ð24Þ
2 This rough estimate should be taken with caution. Both quantities are really

distributions, often with a power-law pdf, and may not even posses finite means.
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We have introduced the following complex variable instead of
the transverse component of the magnetic field by b ¼ Bx þð
iByÞ/B0. The above equations are written in the shock frame.
Now we need to transform particle momentum p to the local
plasma frame, i.e., the frame moving with respect to the shock
with the velocityU(z, t), since it is thismomentum the convection-
diffusion equation [eq. (7)] refers to. This transformation can be
written in the approximationUT1 as p0 ¼ 1# U%ð Þp. Nowwe
differentiate the both sides of the last formula with respect to time,
taking into account that to this order of approximation dU /dt -
ż@U /@z. Making also use of equations (22) and (24), for the
acceleration rate in the local plasma frame we obtain

ṗ0 ¼ #%2 @U

@z
p0: ð25Þ

Recall that the precursor scale height Lp that determines @U/@z
should be calculated using the spectral break momentum at p",
i.e., Lp ¼ ! p"ð Þ/U1. We also note that the acceleration rate in
equation (25) does not contain the dynamical variable ( and is
actually almost independent of z. This is because U, to a good
approximation, can be considered as a linear function of z in a
significant part of the shock precursor (in the case of the Bohm
diffusion). As we mentioned earlier, due to the large gyroradius,
we can neglect any small-scale variation ofU. This includes the
structure of individual shocks in the shock train, so that only the
gradual variation of U across the CRP is important. In addition,
we are really interested in the averaged value of the acceleration
rate ṗ0/p0. For example, if the particle transport in pitch angle is
a small step diffusion, % can be regarded as a random variable
evenly distributed over the interval (#1, 1). In this simple case,
the average %2 ¼ 1

3 , and we recover the standard acceleration
rate given by equation (6). In the case of structured phase space
considered earlier in x 3, one can assume that during most of
an acceleration cycle, a particle is bound to the island having
% ¼ 0. If % 6¼ 0, the particle performs the Levy flights, which
we discuss below. In the case of small islands (i.e., with the
width %0T1), we can replace %2 by %2(for % 6¼ 0) and by %2

0 /3
(for % ¼ 0).

The situation becomes somewhat more complicated in the
case of an oblique shock, for which the phase space shown, for
example, in Figure 3, implies that the cosine of the pitch angle %̃
is to be measured with respect to the average magnetic field and
not with respect to the shock normal as in equation (25). The
transformation to the angles %̃ and (̃, i.e., to the reference frame
having the z-axis aligned with the averaged magnetic field, is
given by

% ¼ %̃ cos ##
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# %̃2

p
sin # sin(̃; ð26Þ

where # ¼ tan#1By (see x 3). Therefore, the acceleration rate
given by equation (25) does include the gyrophase (̃. However,
the dynamics on the (̃; %̃

% &
plane in the case of trapping we are

interested in here, and that is exemplified in Figure 5, is mostly ro-
tation around the origin, so that one can expect that %̃ sin(̃ - 0.
Thus, the acceleration rate can be represented as

ṗ

p
- #K

@U

@z
; ð27Þ

where

K ¼ 1

3
%2
0 cos

2#þ 1

2
1# 1

3
%2
0

! "
sin2#

, -
ð28Þ

and %0 denotes the width of the island in which the particle or-
bit is trapped. We also omitted the primes in the momentum p.
Using this formula it is easy to calculate particle momentum

gain assuming that the particle is trapped by the flow at the dis-
tance z from the subshock in the CRP where the local flow speed
is U(z) and is convected with the flow to the subshock where the
flow speed is#U0. Suppose that at themoment t and coordinate z
the particle has the momentum p0. From equation (27) we have
for the particle momentum at z ¼ 0 where U ¼ #U0,

p¼ p0 exp #K

Z t0

t

@U

@z
dt

, -
¼ p0 exp K ln

U zð Þ
#U0

, -
¼ p0

U

#U0

! "K

:

ð29Þ

Note that in the conventional diffusive acceleration, in which
particles ergodically cover the entire isoenergetic surface, i.e.,
%0 ¼ 1, the acceleration constant K ¼ 1

3 (independent of #), and
the last result signifies the effect of adiabatic compression of the
CR gas by the converging flow. On the other hand, if the particle
dynamics is such that %0 - 0 and # - &/2, which corresponds
to two-dimensional compression across the magnetic field, one
obtains K - 1

2. In strong CR-modified shocks, the shock pre-
compression R ¼ U1/U0 scales as M 3/4 (Kazanas & Ellison
1986; Berezhko et al. 1996). As was shown by Malkov (1997),
the latter scaling is only valid for M <M" ) 'inj p"/pinj

% &
4/3,

and the shock precompression R saturates at R ! 'inj p"/pinj
when M > M" (see also Blasi et al. 2005). Here the injection
parameter 'inj ’ cpinj/mU

2
1

% &
nc/n1 and pinj is the injection mo-

mentum, while nc and n1 are the number density of acceler-
ated particles and that of the background plasma far upstream,
respectively. In both Mach number ranges the shock precom-
pression can be quite significant unless the gas heating in the
CRP is strong. At the same time, strong reduction of the shock
precompression by plasma heating would diminish the heating
itself by weakening the acoustic (Drury) instability of the CRP.
The situation may settle at some critical level at which a mod-
erate, but still quite significant, precompression is accompanied
by the CRP heating caused by the acoustic instability (Malkov
et al. 2000; Malkov & Drury 2001). Further interesting analysis
of the nonlinear shock acceleration and its bifurcation has been
published recently by Blasi et al. (2005).

6.2. Acceleration Model: Details

The picture that emerges from the above study of particle dy-
namics in the modified shock precursor can be described as fol-
lows. There are three groups of particles. One group is made up
by particles that are locally trapped in the plasma flow by a struc-
ture in the shock train. They are convected with the flow and
either do not propagate at all or propagate very slowly with re-
spect to the flow. They are clearly seen in, e.g., Figure 10, as the
quasi-horizontal portions of the stochastic trajectory of a single
particle. The remaining two groups of particles are particles per-
forming Levy flights, i.e., those propagating ballistically in posi-
tive and negative directions at the speedsU+ andU#, respectively.
These are characterized by the steep portions of the trajectory in
Figure 10, with positive and negative slopes, respectively. Let us
denote the phase-space density of the above three groups of par-
ticles by F0(t, z, p) and F.(t, z, p). Furthermore, we introduce the
probabilities of transition in units of time by denoting by ,. the
probability of trapping of particles performing Levy flights in pos-
itive and negative directions, respectively. We denote the rates of
the reverse transitions by +.. Now we can write the balance of
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particles in a phase-space cell between z1, p1 and z2 ¼ z1 þ dz,
p2 ¼ p1 þ dp as follows:

@

@t
F0 t; z; pð Þdzdp¼ F0U z1# F0Uj jz2

. /
dpþ ṗF0 p1 # ṗF0

00 00
p2

. /
dz

# +þþ +#ð ÞF0 dzdpþ ,þFþ þ ,#F#ð Þ dzdp;
ð30Þ

or after retaining only the linear terms in dz and dp and using
equation (27), we obtain the following equation for the phase-
space density of trapped particles F0,

@F0

@t
þ @

@z
UF0#K

@U

@z

@

@p
pF0¼# +þþ+#ð ÞF0þ,þFþþ ,#F#:

ð31Þ

Here the constant K is given by equation (28). Proceeding in a
similar manner, we obtain two equations for F. , i.e., for the
phase-space density of the particles in the Levy flight state,

@F.

@t
þ @

@z
U.F. # K.

@U

@z

@

@p
pF. ¼ #,.F. þ +.F0:

ð32Þ

In contrast to equation (31), the acceleration constants K. are
defined by

K. ¼ %2
. cos2#þ 1

2
1# %2

.
% &

sin2#

, -
; ð33Þ

where %. are the averaged values of the cosines of the particles’
pitch angles (%. ¼ %̃) performing Levy flights in the positive and
negative direction, respectively, while U. ¼ c%. cos #3U are
their speed components along the shock normal (cf. eq. [28]).
Note that we ignore direct transitions between the opposite Levy
flights as comparatively rare events. This can be inferred from
Figure 10, for example.

Equations (31) and (32) form a closed system that must be
supplemented with the boundary conditions. Far upstream from
the shock, at z ¼ 1, it is natural to impose the following bound-
ary conditions:

F0 1ð Þ ¼ F# 1ð Þ ¼ 0; ð34Þ

which simply mean that accelerated particles can only leave the
system in that direction, but do not enter from it. Note that
Fþ 1ð Þ 6¼ 0 and should be determined from equations (30) and
(32). The second boundary condition, that at the subshock lo-
cation z ¼ 0, is somewhat more ambiguous. In the standard
DSA scheme it is fixed by the flux of particles convected with
the flow downstream. It can be expressed through the particle
phase-space density and the downstream flow speed since the
particle distribution is isotropic. In the case of high momenta
( p > p") considered here, particles are not bound to the flow so
strongly as to be able to make an isotropic distribution. Rather,
according to equations (30) and (32), particles convected with
the flow at the speed U(z) are being converted into particles
propagating at high speed,U. ! c, and can either leave the sys-
tem upstream (unless they are retrapped) or can penetrate deeply
downstream and reach the contact discontinuity. The latter pos-

sibility for the high-energy particles has been already discussed in
the literature (Berezhko 1996; Blondin & Ellison 2001). The fact
that the contact discontinuity and the forward shock may indeed
be closer to each other due to the back-reaction of accelerated par-
ticles on the shock dynamics, as clearly follows from the nonlin-
ear DSA, seems to find impressive observational confirmation in
Warren et al. (2005). The strong magnetic field at the contact dis-
continuity may very well reflect particles with p > p", and they
can return to the shock. In a simple form this requirement can be
obviously formulated by mathematically setting the total particle
flux through z ¼ 0 equal to zero:

#F0 0ð ÞU0 þ F# 0ð ÞU# þ Fþ 0ð ÞUþ ¼ 0: ð35Þ

In other words, the negative part of the total particle flux, rep-
resented by the first two terms (U# < 0), is reflected by the strong
magnetic turbulence downstream and ultimately reappears at the
shock in the form of the untrapped particles propagating upstream
at the speed Uþ > 0. The strong turbulence downstream may be
formed by the magnetic perturbation convected and compres-
sively amplified from the upstream media and by the Raleigh-
Taylor instability of the contact discontinuity (Jun et al. 1996).

Theway particle momentum enters equations (31) and (32), as
well as the homogeneity of the boundary conditions given by
equations (34) and (35), suggest the power-law solution:

F0; . / p#q: ð36Þ

Assuming for simplicity U. ¼ constant (which is close to the
truth, as, e.g., Fig. 10 suggests), we can rewrite these equations
as follows:

d

dz
UF0 ¼ )0F0þ ,þFþþ ,#F#; ð37Þ

U.
dF.

dz
¼ ).F. þ +.F0: ð38Þ

Here we introduce the following notation:

)0 ¼# K q# 1ð Þ @U
@z

# +;

). ¼ # K. q# 1ð Þ @U
@z

# ,. ;

where

+ ¼ +þ þ +#: ð39Þ

From equations (37) and (35), we have

F0 zð Þ ¼# 1

U

Z 1

z

exp #
Z z 0

z

)0
U

dz00

 !
,þFþ z 0ð Þþ,#F# z 0ð Þ½ ,dz0:

ð40Þ

To zeroth-order approximation in +L/UT1, U /U.T1, from
equation (38) we have Fþ - constant and F# - constant, while
from the boundary condition given by equations (34) and (35), we
obtain

Fþ ¼ U0

Uþ
F0 0ð Þ
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and F# - 0. Upon substitution of F. into equation (40) and
taking it at z ¼ 0, we finally obtain the following equation for
the spectral index q:

Z 1

0

U zð Þ
#U0

, -K q#1ð Þ
exp

Z z

0

+

U
dz 0

! "
,þ zð Þ dz

Uþ
¼ 1: ð41Þ

In fact, the last formula allows a very simple physical inter-
pretation, making it essentially equivalent to the well-known
general Fermi (1949) result. Indeed, Fermi showed that if a
group of particles undergoes continuous acceleration at the rate
"#1
acc and have certain probability to escape that can be charac-
terized by the escape time " esc, then the energy [momentum dis-
tribution normalized above as F0( p)] has the following spectral
index:

qF ¼ 1þ "acc
"esc

: ð42Þ

At least for some short period of time, by definition of these
timescales, one can state that the momentum gain p tð Þ/p 0ð Þ )
p/p0 ¼ exp t/"accð Þ. The probability of staying in the accelerator if
escape is a Poisson process is Pconf ¼ exp #t/"escð Þ. Then equa-
tion (42) can be recast as (cf. Bell 1978; Blandford&Eichler1987;
Achterberg et al. 2001):

qF ¼ 1þ
ln 1=Pconf

% &

ln p=p0ð Þ : ð43Þ

Note that t can be regarded here as the duration of an acceler-
ation cycle and it does not enter the spectral index explicitly. It
should also be clear that determination ofPconf and the momen-
tum gain (or in other words, "esc and "acc) requires in our model
more information about particle transport, in particular, the
particle trapping and untrapping rates , and +.

To demonstrate that the index q in our formula (41) must be
interpreted in the same way as in the classical Fermi problem, let
us analyze various factors in the integrand in equation (41) sep-
arately. Assume that a particle enters an acceleration cycle at z ¼ 0
as a Levy flight in a positive direction with a speedU+ against the
plasmaflow of speedU(z) in the shock precursor, located in a half-
space z > 0. During its flight, the particle has a possibility to be
trapped in the flow that is characterized by the rate ,+. In other
words, during time dt the probability to be trapped between z and
zþ dz equals ,þ tð Þdt ¼ ,þ zð Þdz/Uþ. We see this probability
density in the integral given by equation (41). Assume that the
trapping event actually occurred at some z. Then the particle is
convected (with the flow) back to the subshock at the speed U(z).
During this convection it has a certain probability to escape,which
is characterized by the rate +. This means that if the particle
has a probability of being in the flow P(t), then the probability
to remain there at t þ dt is P t þ dtð Þ ¼ P tð Þ 1# +dtð Þ, or if the
particle is certainly in the flow at t ¼ 0 (just trapped there, for
example), then P tð Þ ¼ exp #

R t

0 + dt
% &

. Noting that dt ¼ dz/U ,
we can write the probability of returning with the flow from z to
z ¼ 0 as

exp #
Z 0

z

+ dz=U

! "
:

Combining with the above probability of being trapped between z
and zþ dz, we can express the probability of completing an ac-
celeration cycle of the length between z and zþ dz as3

dPcycl zð Þ ¼ exp

Z z

0

+

U
dz0

! "
,þ zð Þ dz

Uþ
:

The total probability of completing one such cycle of any possible
length 0 < z < 1 is

Pcycl ¼
Z 1

0

dPcycl

dz
dz:

We can now rewrite equation (41) as follows:

Z 1

0

U zð Þ
#U0

, -K q#1ð ÞdPcycl

dz
dz ¼ 1: ð44Þ

Here the quantity G zð Þ ¼ U zð Þ/U0j jK is equal to a particle mo-
mentum gain pf /pi after it is convected with the flow from z to the
origin (eq. [29]). Using themean value theorem, equation (44) can
be represented as

pf
pi

# $q#1

Pcycl ¼ 1;

where pf /pi
1 2

¼G zð Þ is the mean momentum gain per cycle
and Pcycl is, as stated above, the probability of completing this
acceleration cycle. From the last formula we obviously have

q ¼ 1þ
lnð1=PcyclÞ
ln pf =pi
1 2 ; ð45Þ

which is formally equivalent to the classical Fermi result.
The quantities ,+ and +, which the index q depends on, can be

inferred from the particle stochastic trajectories shown, e.g., in
Figures 6 and 10. Indeed the probability for a particle to be in the
trapped state can be written as "tr/ "tr þ "þL þ "#L

% &
, where " tr and

"L are the average trapping and Levy flight times, respectively,
that can be calculated from the particle trajectory. Then the par-
ticle trapping rate ,+ can be written as

,þ - "tr
"tr þ "þL þ "#Lð Þ

1

"þL
;

similarly,

+. - ".
L

"tr þ "þL þ "#Lð Þ
1

"tr
:

For the case of sufficiently strong shocks in the shock precursor,
the trapping process is quite efficient, so we can assume that

Z Lp

0

+

U
dzT1: ð46Þ

3 Particle behavior during a Levy flight is non-Markovian, since it bears ele-
ments of deterministic motion (this is also true for the trapped particles). How-
ever, the joint probability of two such events is multiplicative, since they evolve
independent of each other.
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Here the shock precursor length Lp can be related to the trapping
probability as

Lp!
R1
0 ,þ zð Þz dzR1

0 ,þ zð Þ dz
:

The requirement for the inequality in equation (46) is then

"p"L
"2tr

T1; ð47Þ

where the precursor crossing time is

"p ¼
Z Lp

0

dz

Uj j
:

An example of a particle trajectory with such long trapping
times is shown in Figure 13. Note that when a particle is bounc-
ing between two to three neighboring shocks it can also be con-
sidered as ‘‘trapped’’ in the flow, as is the case for a particle stuck
to a single shock. These kind of events are clearly seen in Fig-
ure 13. Using equation (41), we present in x 6.3 a simplified
calculation of the power-law index q.

6.3. Estimate of the Power-Law Index
between the Knee and Cutoff

The power-law index q in the momentum range beyond the
knee ( p" < p < pmax) essentially depends on the flow profileU(z)
(eq. [41]). For the Bohm-type diffusivity!( p) in the region p< p"
[i.e., the pressure-dominated part of the spectrum, thus important
for determination of U(z)] the flow profile has been calculated by
Malkov (1997). Assuming here that the integral in equation (41)
cuts off by the exponential factor rather than by,+(z) at suchvalues
of z [where U(z) is still not very different from its subshock value
#U0, i.e., U þ U0j jTU1], one can represent U(z) as follows:

#U zð Þ=U0 - 1þ -
ffiffi
z

p
:

Here

- - 2.
U0 # U2

U0

ffiffiffiffiffiffiffiffiffi
p0p"

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
& U0j j=!0

p
;

where . is the particle injection rate and p0 and p" are the in-
jection and the knee momenta, respectively, in units of mc and

the particle diffusivity !0 ) ! p0ð Þ (see also Fig. 2). In the last
expression for - we omitted an additional factor that is close to
unity. Equation (41) for q can be rewritten as follows:

2
,þ%#k#%#2

Uþ-2

Z 1

0

xþ %ð Þkþ%e#xx dx ¼ 1; ð48Þ

where instead of the power-law index q we use

k ¼ K q# 1ð Þ

and where

% ) +!0

2&. 2p0p" U0 # U2ð Þ2
:

The latter parameter contains the important quantity .2p0 p*,
which was shown to be the control parameter of nonlinear shock
modification (Malkov 1997). Namely, this parameter should be
large in the case of strong shock modification by accelerated par-
ticles. The remaining parameter +!0/ U0 # U2ð Þ2 represents the
detrapping probability of a high-energy particle ( p > p") over the
time of crossing the diffusion length of a freshly injected particle
( p ! p0). It is implied here thatU0 # U2 ! U0. Therefore, we can
assume that%T1. In general, equation (48) can be represented in
terms of an incomplete gamma function, but since %T1, it takes
the following simple form:

" kþ 2ð Þ ¼ '%kþ1; ð49Þ

where " is the gamma function. Here we introduced a new pa-
rameter ' according to

' ¼ Uþ+

U0,þ
’ Uþ

U0

"L"
þ
L

" 2
tr

! c

U0
31:

Since %T1, equation (49) has a solution at kP 1. It depends on
the parameters ' and %, but taking the limit of large ', one can
apply the Stirling formula for the gamma function, which leads to
the following estimate of the power-law index q ¼ 1þ k /K:

q ¼ 1þ 1

K

ln '%ð Þ
ln 1=%ð Þ

:

Fig. 13.—Stochastic particle trajectory represented in the same format as in
Fig. 10, but for p ¼ 0:3, By ¼ 1, and B̃y ¼ 2.

Fig. 14.—Particle power-law index q for p > p" as a function of % for dif-
ferent values of ' and K ¼ 1

3 (see text). The test particle result (q ¼ 2) and an
index corresponding to a strongly modified shock (q ¼ 1:5) are also shown.
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The ratio of logarithms is typically below unity, while the constant
K is in the range of 1

3
1
2. Thus, the power-law index is (almost)

definitely well above 2 (the particle pressure clearly converges),
but it can hardly be significantly higher than 3 for strongly non-
linear fast shocks (see Fig. 14 for a numerical solution of eq. [49]).
For a more accurate determination of the power-law index in the
p > p" range, further study of particle scattering in the shock pre-
cursor is needed. Fortunately, the index q only weakly (logarith-
mically) depends on the most uncertain parameters of the present
model, namely, on % and ' or, equivalently, on the trapping and
untrapping rates , and +.

7. SUMMARY AND CONCLUSIONS

The principal conclusion of this paper is that particle accelera-
tion inside the CR shock precursor may very well be faster and
proceed to higher energies during SNR shock evolution than the
conventional DSA theory suggests. The requirement for such
enhanced acceleration is some limitation on the momentum of
particles that contribute the most to the CR pressure in order
to prevent further inflation of the shock precursor. This can be
achieved by spatial limitations of momentum growth, as dis-
cussed in detail by, e.g., Berezhko (1996), by the wave compres-
sion and blueshifting of the wave spectrum in the CRP (Malkov
et al. 2002), and by the change of acceleration regime after the
end of the free expansion phase (Drury et al. 2003). As a result
of these limitations, a break on the particle spectrum is formed
and maintained at p ¼ p" beyond which particles do not contrib-
ute to the pressure significantly but are still accelerated at the same
rate as particles with momenta p < p".

The fundamental acceleration mechanism is essentially iden-
tical to the nonlinear DSA. The difference from the linear DSA is
that frame switching that results in the energy gain occurs pre-
dominately between the scatterers convected with the gradually
converging upstream flow in the precursor and not between the
upstream and downstream scattering centers, as usually as-
sumed. The maximum momentum is estimated to be

pmax !
c

U1

L

Lp
p"; ð50Þ

with the maximum value of L/Lp P 1
5. Therefore, this mecha-

nism provides up to !0.2(c/U1) enhancement to the maximum
momentum, based on the standard spatial constraints (e.g.,
(Berezhko 1996). The spectral index between p" and pmax de-
pends on both the ratio of the particle trapping to flight time " tr /"L
in the upstream turbulent medium and on the shock precompres-
sion R. This is in deep contrast with the spectrum below p", which
tends to have a form quasi-independent of R (e.g., Malkov &
Drury 2001). The acceleration time is

"acc pmaxð Þ! "NL p"ð Þ ln pmax

p"
; ð51Þ

where "NL pð Þ ’ 4! pð Þ/U 2
1 is the nonlinear acceleration time,

which only slightly differs from the upstream contribution to
the standard linear acceleration time (Malkov & Drury 2001).

The overall temporal development of the acceleration process
can be described as follows. It starts as the standard DSA mech-
anism from some slightly suprathermal momentum pinj and pro-
ceeds at the rate "#1

acc pmaxð Þ! U2
1 /! pmaxð Þ, where ! pð Þ! crg pð Þ

and rg pmaxð Þkmin! 1. The minimum wavenumber kmin decreases
with growing pmax(t), since the MHD waves confining particles
with momenta pinj < p < pmax to the shock are resonantly gener-
ated by the accelerated particles themselves. After pmax reaches a

certain value (that can be calculated analytically, e.g., Malkov &
Drury 2001) and is clearly seen in numerical time-dependent solu-
tions (e.g., Berezhko et al. 1996), a CRP forms, and the accel-
eration then proceeds mostly in the CRP. The acceleration rate,
however, behaves with time approximately as it does at the pre-
vious (linear) stage, since dU/dz decreaseswith the growingwidth
of the CRP, Lp ! ! pmaxð Þ/U1. Note that dU/dz sets the acceler-
ation rate. The next acceleration-boosting transition occurs when
Lp reaches one of its above-mentioned ‘‘natural’’ limits, such as
the accelerator size [a significant fraction of an SNR radius, for ex-
ample, i.e., ! pmaxð Þ/U1! RSNR ]. Assume pmax ’ p" at this point.
Then particles with momenta p > p" cannot be confined to the
shock diffusively, since their diffusion lengthLdif pð Þ ¼ ! pð Þ/U1>
Lp ’ ! p"ð Þ/U1. Fortunately, by this time instabilities of the CRP
produce an ensemble of shocks or similar nonlinear magnetic
structures. These ensembles of structures turn out to be capable of
confining particles with p > p", since the mean distance between
the structures (which is the scale that replaces the wavelength of
particle-confining turbulence in the quasi-linear picture) is much
longer than the particle gyroradius, L3 rg p"ð Þ. Particle confine-
ment is, however, selective in terms of particle location in phase
space. This is similar to, but more general than, particle confine-
ment in magnetic traps, in which only particles having pitch an-
gles satisfying %j j< !B/Bð Þ1/2 are trapped while others leave
the system freely. The price to be paid for this is a spectrum at
p > p" that is even steeper than p#4. This is, in fact, more a bless-
ing than a curse since these particles do not contribute to the CR
pressure significantly and Lp does not grow, thus maintaining the
acceleration rate at the same level U 2

1 /! p"ð Þ for all particles with
momenta p" < p < pmax.
The total acceleration time up to the maximum momentum

pmax (given by eq. [51]) is thus only logarithmically larger than
the acceleration time to reach the spectral break (knee) at p ’ p",
and the maximum momentum itself is also pinned to the break
momentum p" through equation (50). The break momentum is
simply the maximum momentum in the standard DSA scheme,
whatever physical process stops it from growing further. The
realization of the above scenario, which obviously produces a
significant acceleration enhancement in terms of both the max-
imum energy and acceleration time, depends crucially on the
presence of the ensemble of shocks or similar scattering mag-
netic structures in the CRP. Their existence in various (even
CR-unmodified) collisionless shocks is perhaps beyond any
reasonable doubt, as we discussed in x 3, but the real challenge
is to calculate the statistical characteristics of their spacing L and
amplitude parameter !v. A simple approach that we pursued in
x 5 leads to the conservative estimate of L/Lp! 1

10 , so that tak-
ing U1/c ! 103, the maximum momentum exceeds its standard
value by a factor of 100 (eq. [50]).
At this point it is worthwhile to recapitulate the major differ-

ences between our approach and other recent models discussed
in x 1 that are also aimed at the enhancement of acceleration ef-
ficiency. They primarily seek to increase the turbulent magnetic
energy by tapping the free energy of (already) accelerated par-
ticles. This would result in decreasing the particle dwelling time
(more frequent shock crossing and thus faster acceleration) and,
concomitantly, the particle diffusion length (better confinement,
higher maximum energy). Our approach is based on the appre-
ciation of the following:

1. In a nonlinear regime, the acceleration time is reduced be-
cause of a steeper velocity profile in the smooth part of the shock
transition (where acceleration mostly occurs). The steep gradient
is maintained due to the formation of a break on the particle
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spectrum.Without the break, the gradient would flattenwith grow-
ing particle energy slowing down the acceleration. Apart from this
gradient, the acceleration rate does not depend on the mfp ex-
plicitly, as long as the latter is smaller than the shock transition.

2. Particle confinement (maximum energy) is enhanced by
increasing the wavelength (shock spacing in a shock train inside
the CRP, for example) of turbulence that is in a distinctively
strong regime. Departure from the weak turbulence is marked by
modification of particle confinement in the CRP. This steepens
the momentum spectrum beyond the spectral break and ensures
its existence, as required in (1).

It remains unclear, whether the realization of the first (i.e.,
strong magnetic field amplification) hypothesis would preclude
or otherwise strongly influence the acceleration scenario sug-
gested in this paper. It would almost certainly not, if the magnetic
energy increases predominantly at longest scales as suggested by
Diamond & Malkov (2004) . This should merely scale the esti-
mates provided in this paper by renormalizing such basic quanti-
ties as Lp and "NL, thus making acceleration improvement even
stronger. This seems to be necessary for the successful expla-
nation of the Galactic CR spectrum between the knee (at -4 ;
1015 eV) and the second knee (at-1018 eV), e.g., Hörandel et al.
(2005). The knee position can thus be interpreted as p" corre-
sponding to the interstellar magnetic field moderately amplified
(by a factor of 10 or so), whereas the spectrum between the knees
is formed by the mechanism described in xx 6.2 and 6.3. It is also

worthwhile to recall in this regard that due to the scale invariance
of the equations of motion of the accelerated particles (in which
particle momentum and charge enter in combination p/Z, where Z
is the charge number), the high-energy spectra obtained for the
protons remain valid for other particles with the same value of p/Z.
This is what observations actually suggest (e.g., Ellison et al.
1997; Hörandel et al. 2005).

One disadvantage of acceleration enhancement with signifi-
cant field amplification, however, is that the increased magnetic
field inevitably leads to increased radiative losses with a reduc-
tion of the particle maximum energy as an implication. This im-
portant acceleration constraint has been studied in detail by
Aharonian et al. (2002), including applications to many popular
acceleration sites. Naturally, the most prominent impact is ex-
pected on the acceleration of the extremely high energy CRs
(EHECR;k1020 eV). Detailed models of such acceleration have
been proposed by Miniati et al. (2001), Kang & Jones (2005),
and others. Clearly, the acceleration improvement without sig-
nificant increase of the magnetic field potentially provides a sig-
nificant edge on the field amplification scenario in the general
context of the problem of EHECR acceleration.
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